18ELN14/24 USN

First/Second Semester B.E. Degree Examination, Jan./Feb. 2021 **Basic Electronics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the operation of p-n junction diode under forward and reverse biased condition. (08 Marks)
 - Write a short note on:
 - i) Light emitting diode
 - ii) Photo coupler.

- Explain the operation of 7805 fixed IC voltage regulator.

(06 Marks)

(06 Marks)

- 2 With neat circuit diagram and waveform explain the working of a centre tapped full wave (08 Marks)
 - Explain briefly the operation of a capacitor filter circuit.

- (06 Marks)
- For the diode circuit shown in Fig.Q2(c), determine V₀ and I_D.

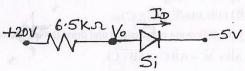


Fig.Q2(c)

(06 Marks)

Module-2

Explain the characteristics of N-channel JFET.

- (08 Marks)
- b. With neat circuit diagram, explain the working of CMOS inverter.
- (08 Marks)
- c. A certain JFET has an I_{GSS} of -2nA for $V_{GS} = -20V$. Determine the input resistance.

(04 Marks)

OR

- a. Draw and explain the operations of SCR using 2 transistor equivalent circuit.
- (08 Marks)

Explain phase controlled application of SCR.

- (06 Marks)
- Explain the construction and working of P channel enhancement type MOSFET. (06 Marks)

Module-3

- 5 For an op-amp:
 - List the characteristics of an ideal ap-amp i)
 - Draw the three input inverting summer circuit and derive the expression for its output voltage. (08 Marks)
 - b. Define the terms:
 - i) Slew rate
 - ii) CMRR
 - iii) Common mode gain AC of op-amp.

(06 Marks)

Design an adder circuit using an op-amp to obtain an output voltage of $-[2V_1 + 3V_2 + 5V_3]$. (06 Marks)

1 of 2

18ELN14/24

(06 Marks)

(06 Marks)

OR

		OR .	
6	a.	Derive an expression for the output voltage of a non-inverting amplifier.	(06 Marks)
	b.	With a neat diagram, explain how an op-amp can be used as a integrator.	(06 Marks)
	c.	A non-inverting amplifier circuit has an input resistance of $10K\Omega$ and feedback	resistance
		60Ω with load resistance of $47K\Omega$. Draw the circuit. Calculate the output voltage	ge, voltage
		gain, load current when the input voltage is 1.5V.	(08 Marks)
		Note: Answer any FTV & full questions, chausing title, just question, your early a	(
		Module-4	
7	a.	Briefly explain how a transistor used as an electronic switch.	(06 Marks)
	b.	Explain how 555 timer can be used as an oscillator.	(06 Marks)
	c.	Define an oscillator. Derive the equation for Wien bridge oscillator.	(08 Marks)
		The stead to the second of West	(oo mana)
		OR OR	
8	a.	Explain the Barkhausens criteria for oscillations.	(06 Marks)
R.A	b.	Draw and explain the operation of a voltage series feedback amplifier and	derive an
		expression for its voltage gain with feedback.	(06 Marks)
	c.	Explain the operation of an RC phase shift oscillator.	(08 Marks)
		the With treat executify diagram and waveform explain the working of a clean learn	(001111111)
		Module-5	
9	a.	Convert the following:	
		i) $(867)_{10} = (?)_2 = (?)_{16}$	
		ii) $(110111101.01)_2 = (?)_{10} = (?)_{16}$.	(08 Marks)
	b.	Simplify the following expressions and draw the logic circuit using basic gates.	
		N. M. AB. AG. ABG. (AB. G)	
		i) $Y = AB + AC + ABC + (AB + C)$	
		ii) $Y = A(\overline{ABC} + A\overline{BC})$.	(06 Marks)
	c.		
	С.	Realize a full adder circuit using 2 half adders.	(06 Marks)
		Explain the illumerense soft Nebrucel HFT	
10		Desforms the following a	
10	а.	Perform the following:	
		i) Convert $(ABCD)_{16} = (?)_2 = (?)_8$	
		ii) Convert $(4477.85)_{10} = (?)_{16} = (?)_8$.	(08 Marks)
			,

* * * * *

c. With a neat block diagram, explain the working of a communication system.

b. Draw and explain 4-bit shift register.